Efficient Speed-Up of the Smallest Enclosing Circle Algorithm

نویسندگان

چکیده

The smallest enclosing circle is a well-known problem. In this paper, we propose modifications to speed-up the existing Weltzl’s algorithm. We perform preprocessing reduce as many input points possible. reduction step has lower computational complexity than algorithm and thus speed-ups its computation. Next, some changes end are summarized results, that show for ${10^{6}}$ up 100 times compared original Even more, proposed capable process significantly larger data sets standard

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution Methodologies for the Smallest Enclosing Circle Problem

Given a set of circles C = {c1, ..., cn} on the Euclidean plane with centers {(a1, b1), ..., (an, bn)} and radii {r1, ..., rn}, the smallest enclosing circle (of fixed circles ) problem is to find the circle of minimum radius that encloses all circles in C. We survey four known approaches for this problem, including a second order cone reformulation, a subgradient approach, a quadratic programm...

متن کامل

Computing the Smallest k-Enclosing Circle and Related Problems

We present an e cient algorithm for solving the \smallest k-enclosing circle" ( kSC ) problem: Given a set of n points in the plane and an integer k n, nd the smallest disk containing k of the points. We present two solutions. When using O(nk) storage, the problem can be solved in time O(nk log 2 n). When only O(n logn) storage is allowed, the running time is O(nk log 2 n log n k ). This proble...

متن کامل

Smallest enclosing circle centered on a query line segment

Given a set of n points P = {p1, p2, . . . , pn} in the plane, we show how to preprocess P such that for any query line segment L we can report in O(log n) time the smallest enclosing circle whose center is constrained to lie on L . The preprocessing time and space complexity are O(n log n) and O(n) respectively. We then show how to use this data structure in order to compute the smallest enclo...

متن کامل

Efficient Algorithms for the Smallest Enclosing Ball Problem

Consider the problem of computing the smallest enclosing ball of a set of m balls in 30. In this paper we develop two algorithms that are particularly suitable for problems where n is large. The first algorithm is based on log-exponential aggregation of the maximum function and reduces the problem into an unconstrained convex program....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Informatica (lithuanian Academy of Sciences)

سال: 2022

ISSN: ['1822-8844', '0868-4952']

DOI: https://doi.org/10.15388/22-infor477